Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
نویسندگان
چکیده
We simulated a growth model in (1+1) dimensions in which particles are aggregated according to the rules of ballistic deposition with probability p or according to the rules of random deposition with surface relaxation (Family model) with probability 1-p. For any p>0, this system is in the Kardar-Parisi-Zhang (KPZ) universality class, but it presents a slow crossover from the Edwards-Wilkinson class (EW) for small p. From the scaling of the growth velocity, the parameter p is connected to the coefficient lambda of the nonlinear term of the KPZ equation, giving lambda approximately p(gamma), with gamma=2.1+/-0.2. Our numerical results confirm the interface width scaling in the growth regime as W approximately lambda(beta)t(beta) and the scaling of the saturation time as tau approximately lambda(-1)L(z), with the expected exponents beta=1/3 and z=3/2, and strong corrections to scaling for small lambda. This picture is consistent with a crossover time from EW to KPZ growth in the form t(c) approximately lambda(-4) approximately p(-8), in agreement with scaling theories and renormalization group analysis. Some consequences of the slow crossover in this problem are discussed and may help investigations of more complex models.
منابع مشابه
Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
We study numerically the Kuramoto-Sivashinsky equation forced by external white noise in two space dimensions, that is a generic model for, e.g., surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the one-dime...
متن کاملUniversal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.
Motivated by the recent exact solution of the stationary-state Kardar-Parisi-Zhang (KPZ) statistics by Imamura and Sasamoto [ Phys. Rev. Lett. 108 190603 (2012)], as well as a precursor experimental signature unearthed by Takeuchi [ Phys. Rev. Lett. 110 210604 (2013)], we establish here the universality of these phenomena, examining scaling behaviors of directed polymers in a random medium, the...
متن کاملFinite-size Scaling Study of the Ballistic Deposition Model in (1 + 1)-dimensions
We performed extensive Monte Carlo simulations of the ballistic deposition model in (1 + 1)-dimensions for several system sizes up to 1280 lattice constants, on the square lattice. Though the ballistic deposition model is generally accepted to belong to the Kardar-Parisi-Zhang (KPZ) universality class, strong corrections to scaling prevent numerical estimates of the exponents close to the asymp...
متن کاملTransients due to instabilities hinder Kardar-Parisi-Zhang scaling: a unified derivation for surface growth by electrochemical and chemical vapor deposition.
We propose a unified moving boundary problem for surface growth by electrochemical and chemical vapor deposition, which is derived from constitutive equations into which stochastic forces are incorporated. We compute the coefficients in the interface equation of motion as functions of phenomenological parameters. The equation features the Kardar-Parisi-Zhang (KPZ) nonlinearity and instabilities...
متن کاملKinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.
We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2002